

Quarter 4

Precalculus

Quarter 1	Quai	ter 2	Quarter 3	Qua	rter 4
Various Functions & Their Graphs, Polynomials & Polynomial Functions, Inverse Functions	Trigonometric Their Graphs Inverse Trigonor Law of Sines, L Trigonometric	Functions and s, Unit Circle, netric Functions, .aw of Cosine <mark>s</mark> , : Identities	Exponential and Logarithmic Functions, Conic Sections	Systems of E Matrices, Polar Complex Sequences and and Introducti	equations and Coordinates and Numbers, d Series, Limits on to Integrals
August 6 2018 – October 5, 2018	October Decembe	15, 2018 – er 19, 2018	January 7, 2019 – March 8, 2019	March 18, 2019	- May 23, 2019
P.F.IF.A.1	P. G.AT.A.1	P.F.GT.A.8	P.A.PE.A.1	P. A. REI.A.1	P.A.S.A.1
P.F.IF.A.2	P.G.AT.A.3	P.G.TI.A.2	P.A.PE.A.2	P. A. REI.A.2	P.A.S.A.2
P.F.IF.A.4	P.G.AT.A.5		P. A.C.A.2	P. N. VM.A.1	P.A.S.A.3
P.F.IF.A.5	P.G.AT.A.6		P. A.C.A.3	P. N. VM.A.2	P.A.S.A.4
P.F.IF.A.6	P.F.TF.A.1		P.F.IF.A.2	P. N. VM.A.3	P.A.S.A.5
P.F.IF.A.7	P.F.TF.A.2		P.F.IF.A.3	P. N. VM.B.4	P. N. VM.C.13
P.F.BF.A.1	P.F.GT.A.3		P.F.IF.A.5	P. N. VM.B.5	Calculus C.F.LF.A.2
P.F.BF.A.3	P.F.GT.A.4		P.S.MD.A.1	P. N. VM.B.6	Calculus C.F.LF.A.3
P.F.BF.A.5	P.F.GT.A.5		P.S.MD.A.2	P.G.PC.A.1	
P.F.BF.A.6	P.F.GT.A.6		P.S.MD.A.3	P.G.PC.A.2	
P.N.CN.B.7	P.F.GT.A.7		P.N.NE.A.1	P.G.PC.A.3	
			P.N.NE.A.2		

Quarter 4

Precalculus

Introduction

Destination 2025, Shelby County Schools' 10-year strategic plan, is designed not only to improve the quality of public education, but also to create a more knowledgeable, productive workforce and ultimately benefit our entire community.

What will success look like?

In order to achieve these ambitious goals, we must collectively work to provide our students with high quality, college and career ready aligned instruction. The Tennessee State Standards provide a common set of expectations for what students will know and be able to do at the end of a grade. The State of Tennessee provides two sets of standards, which include the Standards for Mathematical Content and The Standards for Mathematical Practice. The Content Standards set high expectations for all students to ensure that Tennessee graduates are prepared to meet the rigorous demands of mathematical understanding for college and career. The eight Standards for Mathematical Practice describe the varieties of expertise, habits of mind, and productive dispositions that educators seek to develop in all students. The Tennessee State Standards also represent three fundamental shifts in mathematics instruction: focus, coherence and rigor.

Instructional Shifts for Mathematics

Quarter 4

Precalculus

The **Standards for Mathematical Practice** describe varieties of expertise, habits of minds and productive dispositions that mathematics educators at all levels should seek to develop in their students. These practices rest on important National Council of Teachers of Mathematics (NCTM) "processes and proficiencies" with longstanding importance in mathematics education. Throughout the year, students should continue to develop proficiency with the eight Standards for Mathematical Practice. The following are the eight Standards for Mathematical Practice:

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of them.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

This curriculum map is designed to help teachers make effective decisions about what mathematical content to teach so that ultimately our students can reach Destination 2025. Throughout this curriculum map, you will see resources as well as links to tasks that will support you in ensuring that students are able to reach the demands of the standards in your classroom. In addition to the resources embedded in the map, there are some high-leverage resources around the content standards and mathematical practice standards that teachers should consistently access. For a full description of each, click on the links below.

Tennessee Academic Standards for Mathematics

SCS 2018/2019 Revised 5/22/18 3 of 14

Precalculus

Structure of the Standards

Structure of the TN State Standards include:

- Content Standards Statements of what a student should know, understand, and be able to do.
- **Clusters** Groups of related standards. Cluster headings may be considered as the big idea(s) that the group of standards they represent are addressing. They are therefore useful as a quick summary of the progression of ideas that the standards in a domain are covering and can help teachers to determine the focus of the standards they are teaching.
- **Domains** A large category of mathematics that the clusters and their respective content standards delineate and address. For example, Number and Operations Fractions is a domain under which there are a number of clusters (the big ideas that will be addressed) along with their respective content standards, which give the specifics of what the student should know, understand, and be able to do when working with fractions.
- **Conceptual Categories** The content standards, clusters, and domains in the 9th-12th grades are further organized under conceptual categories. These are very broad categories of mathematical thought and lend themselves to the organization of high school course work. For example, Algebra is a conceptual category in the high school standards under which are domains such as Seeing Structure in Expressions, Creating Equations, Arithmetic with Polynomials and Rational Expressions, etc.

Precalculus

How to Use the Maps

Overview

An overview is provided for each quarter and includes the topics, focus standards, intended rigor of the standards and foundational skills needed for success of those standards.

Your curriculum map contains four columns that each highlight specific instructional components. Use the details below as a guide for information included in each column.

Tennessee State Standards

TN State Standards are located in the left column. Each content standard is identified as Major Content or Supporting Content (for Algebra I, Algebra II & Geometry only). A key can be found at the bottom of the map.

Content

This section contains learning objectives based upon the TN State Standards. Best practices tell us that clearly communicating measurable objectives lead to greater student understanding. Additionally, essential questions are provided to guide student exploration and inquiry.

Instructional Support & Resources

District and web-based resources have been provided in the Instructional Support & Resources columns. You will find a variety of instructional resources that align with the content standards. The additional resources provided should be used as needed for content support and scaffolding. The inclusion of vocabulary serves as a resource for teacher planning and for building a common language across K-12 mathematics. One of the goals for Tennessee State Standards is to create a common language, and the expectation is that teachers will embed this language throughout their daily lessons.

Precalculus

Topics Addressed in Quarter

- Systems of Equations and Matrices
- Polar Coordinates and Complex Numbers
- Sequences and Series ٠
- Limits and Introduction to Integrals

Overview

In this quarter students see that complex numbers can be represented in the Cartesian plane and that operations with complex numbers have a geometric interpretation. They connect their understanding of trigonometry and geometry of the plane to express complex numbers in polar form. Students also work with vectors, representing them geometrically and performing operations with them. They connect the notion of vectors to the complex numbers. Students also work with matrices and their operations and they see the connection between matrices and transformations of the plane. They also find inverse matrices and use matrices to represent and solve linear systems.

Students investigate vectors as geometric objects in the plane that can be represented by ordered pairs, and matrices as objects that act on vectors. Through working with vectors and matrices both geometrically and quantitatively, students discover that vector addition and operations observe their own set of rules. Students find inverse matrices by hand in 2x2 cases and use technology in other cases. Students solve of real-world problems that can be modeled by writing equations and solved with matrices.

In earlier grades students learned about arithmetic and geometric sequences and their relationships to linear and exponential functions, respectively. Students build upon their understandings of those sequences and extend their knowledge to include arithmetic and geometric series, both finite and infinite. Summation notation and properties of sums are also introduced. Lastly, students are introduced to some calculus topics, namely limits and area under a curve/integration.

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SU	PPORT & RESOURCES
Glencoe: Chapter 6: Systems of	Equations and Matrices; Chapter 8: Vectors; Chap	oter 9: Polar Coordinates and Complex Numbers;	Chapter 10: Sequences and Series
Sulli	van: Chapter 9: Polar Coordinates; Vectors: Chap	ter 11: Systems of Equations and Equalities; Chap	oter 12
	(Allow approximately 4 weeks for in	struction, review, and assessments)	
 Domain: Reasoning with Equations and Inequalities Cluster: Solve systems of equations and nonlinear inequalities. P. A. REI.A.1 Represent a system of linear equations as a single matrix equation in a 	 Essential Question(s): How can we represent data in matrix form? How do we add and subtract matrices and when are these operations defined? How do we multiply matrices and when is 	Glencoe 6-1: Multivariable Linear Systems and Row Operations 6-2: Matrix Multiplication, Inverses, and Determinants 6-2 Extend: Determinants and Areas of	Vocabulary: augmented matrix, coefficient matrix, elementary row operations, multivariable linear system, reduced row-echelon form, Gaussian elimination, Gauss-Jordan elimination, identity matrix, inverse matrix, inverse, invertible, singular matrix, determinant

Quarter 4

Precalculus

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT & RESOURCES	
 vector variable. P. A. REI.A.2 Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 × 3 or greater). Domain: Vector and Matrix Quantities Cluster: Perform operations on matrices and use matrices in applications. P. N. VM.C.9 Add, subtract, and multiply matrices of appropriate dimensions. P. N. VM.C.13 Work with 2 × 2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area. 	 this operation defined? What is an identity matrix and how does it behave? How do we find the determinant of a matrix and when is it nonzero? How do we find the inverse of a matrix and when does a matrix not have an inverse defined? How do we solve systems of equations using inverse matrices? Objective(s): Students will Solve systems of linear equations using matrices. Add, subtract, and multiply matrices of appropriate dimensions and multiply matrices by scalars. Find determinants and inverses of matrices. Find areas of polygons using determinants. 	Polygons Sullivan 11.2: Systems of Linear Equations: Matrices 11.3: Systems of Linear Equations: Determinants 11.4: Matrix Algebra 4-1: Right Angle Trigonometry Additional Resources: Khan Academy: Matrices Select appropriate lessons from the following Module: engageny Lessons (Precalculus & Advanced Topics), Module 2: Vectors & Matrices	 Writing in Math/ Discussion Why is it helpful to have multiple methods for solving a system of equations? Have students describe a reduced-echelon matrix to a partner and how it is used to solve a system of linear equations. Create a system of 3 variable equations that has infinitely many solutions. Explain your reasoning. Explain why a nonsquare matrix cannot have an inverse.
Domain: Vector and Matrix Quantities Cluster: Represent and model with vector quantities. <u>P. N. VM.A.1</u> Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., \mathbf{v} , $ \mathbf{v} $, $ \mathbf{v} $, \mathbf{v}).	 Essential Question(s): How are vectors and scalars similar and different? How can I use vector operations to model, solve, and interpret real-world problems? How can I represent addition, subtraction, and scalar multiplication of vectors 	Glencoe 8-1: Introduction to Vectors 8-2: Vectors in the Coordinate Plane 8-3: Dot Products and Vector Projections Sullivan 9.4: Vectors 9.5: The Dot Product	Vocabulary: vector, initial point, terminal point, standard position, direction, magnitude, quadrant bearing, true bearing, parallel vectors, equivalent vectors, opposite vectors, resultant, triangle method, parallelogram method, zero vector, components, rectangular components, component form, unit vector, linear combination, dot product, orthogonal, vector projection, work

Quarter 4

Precalculus

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
 P. N. VM.A.2 Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point. P. N. VM.A.3 Solve problems involving velocity and other quantities that can be represented by vectors. Domain: Vector and Matrix Quantities 	 geometrically? What are some different ways to add two vectors, and how are these representations related? Objective(s): 	Task(s): <u>GSE Pre-Calculus Unit 7: Vectors</u> Walking and Flying Around Hogsmeade, p.13 A Delicate Operation, p.25 Hedwig and Errol, p.33 Putting Vectors to Use, p. 47 He Whe Must Net Be Nemed p. 54	Writing in Math/ Discussion Have students explain how to add and subtract two vectors. Have them include diagrams. Ask students to write a vector and
Cluster: Understand the graphic representation of vectors and vector arithmetic	Represent and operate with vectors geometrically.	Additional Resources	of the vector using the dot product.
 P. N. VM.B.4 Add and subtract vectors. a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes. b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum. c. Understand vector subtraction v – w as v + (-w), where –w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise. 	 Solve vector problems, including velocity and other quantities that can be represented by vectors. Add/Subtract vectors both algebraically and graphically. Multiply a vector by a scalar both algebraically and graphically. Calculate and interpret the dot product. 	Khan Academy: Vector Basics Select appropriate lessons from the following Module: engage ^{ny} Lessons (Precalculus & Advanced Topics), Module 2: Vectors & Matrices Illuminations Lesson: Sums of Vectors and Their Properties	Compare and contrast the parallelogram and triangle methods of finding the resultant of two or more vectors. Explain how to find the direction angle of a vector in the fourth quadrant. Determine whether the statement below is true or false. If a and b are both orthogonal to v in the plane, then a and b are parallel. Explain your reasoning. See engage ^{ny} Lessons for Exit Tickets/Discussion Questions
 P. N. VM.B.5 Multiply a vector by a scalar. a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c(vx, vy) = (cvx, cvy). 			

Quarter 4

Precalculus

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
b. Compute the magnitude of a scalar multiple $c\mathbf{v}$ using $ c\mathbf{v} = c v$. Compute the direction of $c\mathbf{v}$ knowing that when $ c v \neq 0$, the direction of $c\mathbf{v}$ is either along \mathbf{v} (for $c >$ 0) or against \mathbf{v} (for $c < 0$). P. N. VM.B.6 Calculate and interpret the dot product of two vectors.			
Domain: Polar Coordinates	Essential Question(s):	Glencoe	Vocabulary: Polar coordinate system, pole, polar axis, polar
Cluster: Use polar coordinates. P.G.PC.A.1 Graph functions in polar coordinates. P.G.PC.A.2 Convert between rectangular and polar coordinates. P.G.PC.A.3 Represent situations and solve problems involving polar coordinates	 Why are functions represented by polar equations? How are complex numbers connected to polar coordinates? How can I represent complex numbers graphically? How does the complex plane show addition, subtraction, multiplication, and conjugation of complex numbers? What are two ways to represent a complex number, and what are the advantages of each form? How are operations on real numbers represented in the complex plane? 	 9-1: Polar Coordinates 9-2: Graphs of Polar Equations 9-3: Polar and Rectangular Forms of Equations 0-2: Operations with Complex Numbers 9-5: Complex Numbers and DeMoivre's Theorem Sullivan 9.1: Polar Coordinates 9.2: Polar Equations and Graphs 9.3: The Complex Plane; DeMoivre's Theorem 	 Polar coordinate system, pole, polar axis, polar coordinates, polar equation, polar graph, limaçon, cardioid, rose, leminiscate, spiral of Archimedes, imaginary unit, complex number, standard form, real part, imaginary number, complex conjugates, complex plane, real axis, Argand plane, absolute value of a complex number, polar form, trigonometric form, modulus, augment, <i>p</i>th roots of unity Writing in Math/ Discussion Ask students to write a few sentences comparing and contrasting the polar coordinate system and the rectangular
		Task(s):	coordinate system.
	 Graph points and functions with polar coordinates. Convert from polar coordinates to rectangular coordinates and vice 	<u>GSE Pre-Calculus Unit 7: Vectors</u> It's Not That Complex, p. 62 A Plane You Can't Fly, p.66 Complex Operations, p. 76	Make a conjecture as tom why having the polar coordinates for an aircraft is not enough to determine its exact location.
	versa.		Describe the effect of <i>a</i> in the graph of
	 Perform operations with pure imaginary numbers and complex numbers and represent complex numbers on the 	Additional Resources: Khan Academy: Polar Coordinates	r = a cos Θ.

Quarter 4

Precalculus

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PPORT & RESOURCES
	 complex plane. Use complex conjugate to write quotients of complex numbers in standard form. Convert complex numbers from rectangular to polar form and vice versa. Find products, quotients, powers, and roots of complex numbers in polar form. 	Wolfram: Polar Coordinates Khan Academy: Complex Numbers Wolfram: Complex Number engage ^{ny} Lessons (Precalculus & Advanced Topics), Module1, Topic B: Complex Number Operations and Transformations	How are complex numbers used in real-life situations? Explain why the sum of the imaginary parts of the <i>p</i> th roots of any positive real number must be zero. See engage ^{ny} Lessons for Exit Tickets/Discussion Questions.
	Glencoe: Chapter 10: Sullivan: Chapter 12: Sequences (Allow approximately 3 weeks for ins	Sequences and Series ; Induction; the Binomial Theorem struction, review, and assessments)	
 Domain: Sequences and Series Cluster: Understand and use sequences and series. <u>P.A.S.A.1</u> Demonstrate an understanding of sequences by representing them recursively and explicitly. <u>P.A.S.A.2</u> Use sigma notation to represent a series; expand and collect expressions in both finite and infinite setting. 	 Essential Question(s): How do you tell the difference between an arithmetic and geometric sequence? How can different calculations with an arithmetic or geometric sequence be used in the real world? Why do we write a recursive and explicit formulas for sequences? Why would we need to find the sum of an infinite series? Objective(s): Students will Demonstrate an understanding of sequences by representing them recursively and explicitly. Use sigma notation to represent a notation. 	Glencoe 10-1: Sequences, Series, and Sigma Notation Sullivan 12.1: Sequences Tasks: Accelerated Mathematics III Framework, Unit 2: Sequences and Series Fascinating Fractals Learning Task, p. 17 Additional Resources: Khan Academy: Sequences and Series	Vocabulary: Sequence, term, finite sequence, infinite sequence, recursive sequence, explicit sequence, Fibonacci sequence, converge, diverge, series, finite series, <i>n</i> th partial sum, infinite series, sigma notationWriting in Math/ Discussion Describe why an infinite sequence must not only converge, but converge to 0, in order for there to be a sum.Make an outline that can be used to describe the steps involved in finding the 300th partial sum of the infinite sequence $a_n = 2n - 3$. Then explain how to express the same sum using sigma notation.

Quarter 4

Precalculus

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
 Domain: Sequences and Series Cluster: Understand and use sequences and series. <u>P.A.S.A.3</u> Derive and use the formulas for the general term and summation of finite or infinite arithmetic and geometric series, if they exist. a. Determine whether a given arithmetic or geometric series converges or diverges. b. Find the sum of a given geometric series (both infinite and finite). c. Find the sum of a finite arithmetic series. 	 Essential Question(s): How can different calculations with an arithmetic sequence be used in the real world? Why would we need to find the sum of an infinite series? Objective(s): Students will Determine whether a given arithmetic series converges or diverges. Find the sum of a finite arithmetic series. 	Glencoe 10-2: Arithmetic Sequences and Series Sullivan 12.2: Arithmetic Sequences Tasks: Accelerated Mathematics III Framework, Unit 2: Sequences and Series Renaissance Festival Learning Task, p. 8 Additional Resources: Khan Academy: Sequences and Series Video: Arithmetic Sequences	 Vocabulary: Arithmetic sequence, common difference, arithmetic means, first difference, second difference, arithmetic series Writing in Math/ Discussion You have learned that the <i>n</i>th term of an arithmetic sequence can be modeled by a linear function. Can the sequence of partial sums of an arithmetic series also be modeled by a linear function? If yes, provide an example. If no, how can the sequence be modeled?
 Domain: Sequences and Series Cluster: Understand and use sequences and series. P.A.S.A.3 Derive and use the formulas for the general term and summation of finite or infinite arithmetic and geometric series, if they exist. a. Determine whether a given arithmetic or geometric series converges or diverges. b. Find the sum of a given geometric series (both infinite and finite). c. Find the sum of a finite arithmetic series. P.A.S.A.4 Understand that series represent the approximation of a number when truncated; estimate truncation error in specific examples. 	 Essential Question(s): How can different calculations with a geometric sequence be used in the real world? Why would we need to find the sum of an infinite series? Objective(s): Students will Determine whether a given geometric series converges or diverges. Find the sum of a given geometric series, both infinite and finite. 	Glencoe 10-3: Geometric Sequences and Series Sullivan 12.3: Geometric Sequences Tasks: Mathematics Vision Project: Module 2 Arithmetic and Geometric Sequences Growing Dots Growing, Growing Dots Scott's Workout Don't Break the Chain Something to Chew On	Vocabulary: Geometric sequence, common ration, geometric means, geometric series Writing in Math/ Discussion Have students write how they know whether a sequence is a geometric sequence. Explain why an infinite geometric sequence will not have a sum if r > 1.

Quarter 4

Precalculus

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PORT & RESOURCES
Domoin: Converses and Series	Objective(e)	Chew On This What Comes Next? What Comes Later? What Does It Mean? Geometric Meanies I Know What Do You Know? Additional Resources: Khan Academy: Sequences and Series Glencoe	Vocabulary:
Cluster: Understand and use sequences and series. P.A.S.A.5 Know and apply the Binomial Theorem for the expansion of $(x + y)^n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.	• Know and apply the Binomial Theorem.	10-5: The Binomial Theorem Sullivan 12.5: The Binomial Theorem Tasks: Mathematics Vision Project: Module 3, Task 5 The Expansion Additional Resources: Khan Academy: The Binomial Theorem Khan Academy: Expand Binomials/Pascal's Triangle engage ^{ny} (Precalculus & Advanced Topics), Module 3, Topic A, Lesson 4: The Binomial Theorem	 Binomial coefficients, Pascal's triangle, Binomial Theorem Writing in Math/ Discussion Describe how to find the numbers in each row of Pascal's triangle. Then write a few sentences to describe how the expansions of (a + b)ⁿ⁻¹ and (a - b)ⁿ are different. Determine whether the statement below is sometimes, always, or never true. Justify your reasoning. If a binomial is raised to the power 5, the two middle terms of the expansion have the same coefficients. See engage^{ny} Lessons for Exit Tickets/Discussion Questions.
Glencoe: Chapter 12: Limits and Derivatives Sullivan: Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function (Allow approximately 2 weeks for instruction, review, and assessments)			
Toppossoo Academic Standards for Mathematics			

Quarter 4

Precalculus

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUP	PPORT & RESOURCES
Calculus Domain: Limits of Functions Cluster: Understand the concept of the limit of a function. <u>C.F.LF.A.2</u> Estimate limits of functions from graphs or tables of data.	 Essential Question(s): How does the integral represent the summation of an infinite set? Objective(s): Students will Estimate limits of functions at fixed values and at infinity. Construct the difference quotient for a given function and simplify the resulting expression. 	Glencoe 12-1: Estimating Limits Graphically 12-2: Estimating Limits Algebraically Sullivan 14.1: Finding Limits Using Tables and Graphs 14.2: Algebra Techniques for Finding Limits Additional Resources: Khan Academy: Limits Basics Calculus Help Videos - Limits Brightstorm: Finding Limits Graphically Better Lesson: Intro to Calculus Resources	Vocabulary: One-sided limit, two-sided limit Writing in Math/ Discussion Explain what method you would use to estimate limits if a function is continuous. Explain how this differs from methods used to estimate functions that are not continuous.
Calculus Domain: Understanding Integrals Cluster: Demonstrate understanding of a Definite Integral. <u>C.I.UI.A.3</u> Use Riemann sums (left, right, and midpoint evaluation points) and trapezoid sums to approximate definite integrals of functions represented graphically, numerically, and by tables of values.	 Objective(s): Students will Approximate the area under a curve using rectangles. 	Glencoe 12-5: Area Under a Curve and Integration Sullivan 14.5: The Area Problem; The Integral Additional Resources: Khan Academy: Riemann Sums Khan Academy: Trapezoidal Sums Better Lesson: Intro to Calculus Resources	 Vocabulary Regular partition, definite integral, lower limit, upper limit, right Riemann sum, integration Writing in Math/ Discussion Explain the effectiveness of using triangles and circles to approximate the area between a curve and the <i>x</i>-axis. In your own words using appropriate figures, describe the methods of upper sums and lower sums in approximating the area of a region.

RESOURCE TOOLBOX

Quarter 4

Precalculus

RESOURCE TOOLBOX			
Textbook Resources Glencoe Precalculus © 2011 <u>http://connected.mcgraw-hill.com/connected/login.do</u> Sullivan Precalculus: Enhanced with Graphing Utilities, 5e © 2009.	Standards Common Core Standards - Mathematics Common Core Standards - Mathematics Appendix A The Mathematics Common Core Toolbox Common Core Lessons Tennessee Academic Standards for Mathematics	Videos <u>Khan Academy</u> <u>Lamar University Tutorial</u> <u>UCI Precalculus Instructional Videos</u>	
Calculator Texas Instruments Education Texas Instruments - Precalculus Activities Casio Education TI Emulator Math Nspired	Interactive Manipulatives http://www.ct4me.net/math_manipulatives_2.htm Illuminations (NCTM) ACT ACT College & Career Readiness Mathematics Standards Tasks/Lessons	Additional Sites http://functions.wolfram.com http://www.analyzemath.com/Graphing/piecewise_funct ions.html http://www.purplemath.com/ http://www.onlinemathlearning.com/math-word- problems.html http://education.ti.com/calculators/downloads/US/Activit ies/Detail?id=9530 Patheol access	
	UT Dana Center Inside Math Tasks Math Vision Project Tasks Better Lesson Edutoolbox.org (formerly TN Core) SCS Math Tasks (Precalculus)	<u>Algebra Cheat Sheet</u> <u>Trigonometry Cheat Sheet</u> <u>Online Algebra and Trigonometry Tutorial</u> <u>Study Tips for Math Courses</u> <u>Graphic Organizers (9-12)</u>	